
IS (CSE-303-F) 
 

Section A 
 

AI PROGRAMMING LANGUAGES: 
INTRODUCTION TO LISP & PROLOG 



Prelude  

 

Computer languages can be categorized in many ways depending 

on what aspects to be observed. This is also true for Prolog and 

Lisp.  

 

o Historical generations of languages 

 

1st  Machine  

 

2nd  Assembly  

 

3rd  High-level, e.g., C, C++, Java, Fortran, Cobol, . . .  

 

4th  Very high-level, e.g., SQL for databases   

 

5th Symbolic, e.g., Prolog and Lisp  

  Use symbols (rather than variables and constants as main  

  program elements)  

  Symbolic languages are often termed as AI languages.  

 



§ Prolog  

 

PROgramming in LOGic  

 

Born in the early 1970s in France  

 

A declarative language based on predicate logic  

 

   Most high-level languages, such as C, C++ and Java, are procedural.  

 

   This makes Prolog unique and interesting.  

 

In a declarative language, one specifies "what“.  In contrast,  

in a procedural language, one writes "how" the program is executed. 

 

Lisp, which will be discussed in the next section, is both declarative and 

procedural.  

 

 



● Application domain includes:  

Knowledge-based (so-called expert) systems,  

natural language processing (e.g., Jeopardy!)   

compiler writing, 

symbolic algebra,  

VLSI circuit analysis,  

relational databases, (e.g., Jeopardy!) and 

image processing. 

 



SWI-Prolog is a public-domain Prolog and is available at:  

 

http://www.swi-prolog.org  

http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/


Basic Prolog elements  

 

o Facts   

 

A fact, e.g., “John owns the book” is represented as:  

 

  owns (john, book).  

 

    predicate  arguments (any number of arguments)  

 

 

o Questions  

 

  ?-owns (john, book).  or  owns (john, book)?  

 

 Prolog responds → “Yes” given the above fact.  

 

o A constant (e.g., john) starts with a lower-case letter.  

   A variable (e.g., X,  _3) starts with an upper-case letter or “_”.  

 



o Rules  

Examples of rules  

 parent(X,Y) :-  mother(X,Y).  

   X is a parent of Y if X is the mother of Y.  

     “:-” is read as “if”; “,” as logical “AND”; “|” as logical “OR” .     

 parent(X,Y) :-  father(X,Y). 

 grandparent(X,Z) :- parent(X,Y), parent(Y,Z). 

 sibling(X,Y):- mother(M,X), mother(M,Y), 

  father(F,X), father(F,Y).  

e.g.,  

 mother (cathy, bob).  

 father (bob, ann).  

 grandparent(X, ann)? →X = cathy 

 



Prolog facts and rules are called clauses.   

 

A set of clauses (i.e., facts and rules) with the same predicate is 

called a procedure.  

 

Example 

 parent(X,Y) :-  mother(X,Y).  

 parent(X,Y) :-  father(X,Y). 

 



 

The program elements we have seen such as owns, john, book, 

parent and mother are symbols. We can use these symbols 

without declaring that they are symbols in a symbolic language 

such as Prolog and Lisp.  

 

This is not the case for conventional, non-symbolic languages 

such as Java and C.  

 



o structures   

e.g.,  

 class (cis, 524, 50)  

 

 functor   arguments  

 

 takes (john, class (cis, 524, 50) )  

 

   “takes” is the functor and there are two arguments:  

   an atom “john” and a structure “class (cis, 524, 50)”.  

  A structure can be represented as a tree.  

 

   takes  

 

  john   class  

 

   cis  524  50  

 

 

 



Exercise #1  (A simple database in Prolog) 

 

a.  Set up a database describing three types of relations for capitals, countries, and 

continents using the following information: 

    Capitals         Latitude Longitude    Countries         Continents 

    Washington_DC   (38  -77)          USA           North_America 

    Ottawa           (45  -76)           Canada            North_America 

    London           (51  0)             United_Kingdom    Europe 

    Paris            (48  2)             France            Europe 

    Rome             (41  12)            Italy            Europe 

    Lagos           ( 6  -3)            Nigeria          Africa 

  

    Three types of relations for the above data: 

    capital_of      e.g.,    capital_of (paris, france). 

    country_in    e.g.,    country_in (usa, north_america). 

    location         e.g.,    location (ottawa, 45, -76).  

 

The latitude and longitude figures are given in degrees, where North and East are 

positive, and South and West are negative integers. 

 

  



Exercise #1  (cont.) 

 

b.  Write the following questions as Prolog queries. 

    1.  Is Rome the capital of France? 

 Ans. ?- capital_of (rome, france).  

 

    2.  Is Washington_DC the capital of a country in Europe? 

 Ans. ?- capital_of (washington_dc, X), country_in (X, europe).  

 

    3. Which city is the capital of Italy? 

 Ans. ?- capital_of (X, italy).  

 

    4. Which cities are West of Rome? 

     Ans. ?- location (X, _, V), location(rome, _, V1), V < V1.  

 

    5.  List the European countries whose capitals are North of Rome and 

        South of London. 

     Ans. ?- country_in (Y, europe), capital_of (X, Y), location (X, U, _),   

 location (london, U1, _), location (rome, U2, _), U < U1, U > U2.  

  

             



o Lists  

 

e.g., [a, b, c] is a list having three elements a, b and c.  

 

 “a” is the head of the list.   

 

 “[b, c]” is the tail of the list.  

 Note. The tail is not “b, c”.  

 

[Head | Tail] format.  

 

 When [Head | Tail] = [a, b, c], Head = a and Tail = [b, c].  

 

Format variations  

 

[X, Y | L], where X and Y are the first two elements and L is the list 

of the remaining elements.   

 

[Head, . .  Tail], [a, b, . . L].  

 



Exercises  

 

 Define procedure h(X, L) that succeeds if X is the head of list L.  

 

 Ans. h(X, [X | L]).  

 

Then,  

 ?-h(a, [a, b, c]). → yes  

 ?-h(X, [a, b, c]). →X = a  

 ?-h(X, [ ]). → no  

 

 

 



Exercises (cont.)  

 

 Define procedure last(X, L) that succeeds if X is the last element 

of list L.  

 

Strategy: Consider key representative scenarios.  

 

(1) If L is empty, last should fail. Specify no clause.  

(2) L contains one element.  

 last(X, [X]).  

(3) General case  

     The last element of [_ | Y] is the last element of Y.  

 last(X, [_ | Y]) :- last(X, Y).  

 

 

Then,  

 ?-last(c, [a, b, c]). → yes  

 ?-last(X, [a, b, c]). →X = c  

 ?-last(X, [ ]). → no  

 

 

 



Programming hints for Prolog lists  

 

1. First, consider simplest cases.  

 

2. Represent a list in {H | T] form, and manipulate H and T.  

  

3. The use of recursion is very common for T.  

 



Exercises (cont.)  

 

 Define procedure  

 

Append (L1, L2, L3), where L1 and L2 are appended giving L3.   

 

Any one of L1, L2 and L3 can be uninstantiated (no value assigned).  

 

       e.g., ?- append ([a, b], [c], L3). → L3 = [a, b, c]  

 

Ans.  

 

 append ([ ], L, L).    % Appending an empty list to L gives L.  

 

 append ([X | L1], L2, [X | L3]) :- append (L1, L2, L3).  
 



Exercises (cont.) 

 

  insert(X, L1, L2) inserts element X into an appropriate place of list L1, 

giving list L2. e.g., ?-insert(c, [a, b, d], L2)  → L2 = [a, b, c, d]    

 

insert(X, [ ], [X]).  % insert to an empty list  

insert(X, [X | T], [X | T]). % if X = head of L1, do not insert to avoid a duplicate.  

insert(X, [H | T], [X, H | T]) :- X < H. % if X < H then insert X at the biginning.  

insert(X, [H | T1], [H | T2]) :- X > H, insert(X, T1, T2).  

 

 sort(L1, L2) sorts elements of L1 giving L2.  

sort([ ] , [ ]).  

sort([H | T], S) :- sort(T, L), insert(H, L, S).  

 

 

In a declarative language, one specifies "what“.   

In contrast,  

in a procedural language, one writes "how" the program is computed. 

 

Think about what  Java or C code looks like for sorting.  



Prolog References  

 

Books 

 

Clocksin, W. F. and Mellish, C. S.  Programming in Prolog, 4th Ed. 

Springer-Verlag, 1994.  

A widely-used textbook. Compact descriptions.  

 

Ivan Bratoko, Prolog Programming for Artificial Intelligence, 4th 

edition, Addison-Wesley, 2011.  

Detailed descriptions.  

 

 



Journal articles published by Munakata   

 

T. Munakata.  "Procedurally Oriented Programming Techniques in 

Prolog", IEEE Expert, 1, 2, Summer, 1986, pp. 41-47.  

Discusses how conventional programming structures such as do-while 

and if-then-else can be implemented in Prolog.  

 

T. Munakata.  "Notes on Implementing Sets in Prolog," 

Communications of  the ACM, 35, 3, March 1992, pp. 112-120. 

 

T. Munakata.  "Notes on Implementing Fuzzy Sets in Prolog," 

Fuzzy Sets and Systems, 98, 3, Sept., 1998, pp. 311-317.   

 

T. Munakata and R. Barták, “Logic Programming for Combinatorial 

Problems,” Artificial Intelligence Review, Published online: 

November 2009, DOI 10.1007/s10462-009-9150-5; published 

hardcopy: 33, 1, 2010, pp. 135-150.  

Implementation of combinatorial problems such as permutations and 

combinations in Prolog is discussed.  

 



§ Lisp   

LISt Processing 

Lisp was originated by John McCarthy in the late 1950s.   

Lisp and Prolog are the two major AI languages today 

 

GNU CLISP – an ANSI Common Lisp 

 

 www.clisp.org UNIX and MS windows versions are available.  

 

 



● Basic Features of Lisp  

 

o Lisp has essentially one data type, called S–expressions  (short for 

“Symbolic expression”).  

 

 

S – expression 

 

                      Atom       List 

                                             e.g., (dick   jane) 

 Number  Symbol              ↑         ↑  

       e.g., mary               atom    atom  

Fixed Point  Floating Point 

        

  

 

 

 

 

 



§ Lisp   

  

 o  A Lisp program is an ordered set of lists,  i.e., in Lisp, programs 

and data have the same form. This means that programs can be 

manipulated by programs as if they are data.  

 

o Many similarities between Lisp and Prolog.  

 Symbolic. 

 Not convenient for numeric computation. 

 Programs and data have the same form. 

 List is important data structure. 

 Extensive use of recursion 

 It turns out that many AI problems are naturally represented in 

Lisp and Prolog:  

           Symbolic Algebra 

           Natural language processing 

          Knowledge representation  

 

 

 

 



● Basic Arithmetic Operations            

                            Lisp's Response 

( +    8   3)        →   11 

 

        In the above 8 and 3 are arguments.  

     + is an operator or more generally a function.  

Lisp is called a functional language since everything gets done by 

executing a function.  

 

(+   5    3    4)         →   12  

Any number of arguments. Similarly,  

(-    8   3)      →   5 

 (- 8    3   4 )     =     8  -  3  -  4     →   1 

(*  4   3    2)   →   24 

(/    48   8   3 )   →   2  

(1+    8)    →   9  

   No space between 1 and + or -.  

(1-     8)    →   7   

   Only one argument for 1+ and 1-.  

 

 



● Symbols  

 

e.g   x is a symbol.  

 

(setq    x    5)  →        5  Assigns value 5 to x.  

     x = 5 in C, Java.  

 setq does not evaluate its first argument.  

 

x   →        5 

 

(+    x    8)  →      13 

 

(setq   y   (*   3   4)) →      12 

 

 

 

 

 


